Regulation of Renal LAT2 and 4F2hc Expression by Aldosterone
نویسندگان
چکیده
In the spontaneous hypertensive rat, overexpression of the renal Na-independent L-amino acid transporter LAT2 is organ specific, precedes the onset of hypertension, correlates negatively with plasma aldosterone, and parallels the enhanced ability to take up L-DOPA and form renal dopamine. The present study evaluated the role of aldosterone on transcript and protein abundance of Na-independent and Na-dependent amino acid transporters. Na-independent heterodimeric amino acid transporters LAT1/4F2hc, LAT2/4F2hc and a Na-dependent transporter ASCT2 transcript and protein abundance was determined in the renal cortex of normotensive Wistar rats chronically treated with aldosterone (1.5 mg), spironolactone (200 mg) or aldosterone plus spironolactone. Aldosterone significantly increased renal cortical LAT2 mRNA levels (45 % increase), with no changes in LAT1, 4F2hc and ASCT2 transcript levels. The effect of aldosterone upon LAT2 mRNA levels was completely prevented by spironolactone. At the protein level, aldosterone treatment did not significantly affect LAT1 and LAT2 expression, but markedly reduced (51 % decrease) the abundance of 4F2hc and the urinary excretion of dopamine and DOPAC. The effect of aldosterone upon 4F2hc protein abundance was not reversed by spironolactone. Increases in renal LAT2 transcript during chronic treatment with aldosterone occur through a spironolactone-sensitive genomic mechanism. This effect parallels with a decrease in LAT2 functionality, resulting from decreases in 4F2hc protein abundance, which appears to be either a non-genomic effect or an indirect effect of aldosterone. The decrease in LAT2 functionality by aldosterone correlates well with the reduction in urinary dopamine.
منابع مشابه
Association of 4F2hc with light chains LAT1, LAT2 or y+LAT2 requires different domains.
Heterodimeric amino acid transporters are comprised of a type-II membrane protein named the heavy chain (4F2hc or rBAT) that may associate with a number of different polytopic membrane proteins, called light chains. It is thought that the heavy chain is mainly involved in the trafficking of the complex to the plasma membrane, whereas the transport process itself is catalysed by the light chain....
متن کاملCloning and functional characterization of a Na(+)-independent, broad-specific neutral amino acid transporter from mammalian intestine.
We have isolated a cDNA from a rabbit intestinal cDNA library which, when co-expressed with the heavy chain of the human 4F2 antigen (4F2hc) in mammalian cells, induces system L-like amino acid transport activity. This protein, called LAT2, consists of 535 amino acids and is distinct from LAT1 which also interacts with 4F2hc to induce system L-like amino acid transport activity. LAT2 does not i...
متن کاملActivation of system L heterodimeric amino acid exchangers by intracellular substrates.
System L-type transport of large neutral amino acids is mediated by ubiquitous LAT1-4F2hc and epithelial LAT2-4F2hc. These heterodimers are thought to function as obligatory exchangers, but only influx properties have been studied in some detail up until now. Here we measured their intracellular substrate selectivity, affinity and exchange stoichiometry using the Xenopus oocyte expression syste...
متن کاملDetergent-Induced Stabilization and Improved 3D Map of the Human Heteromeric Amino Acid Transporter 4F2hc-LAT2
Human heteromeric amino acid transporters (HATs) are membrane protein complexes that facilitate the transport of specific amino acids across cell membranes. Loss of function or overexpression of these transporters is implicated in several human diseases such as renal aminoacidurias and cancer. HATs are composed of two subunits, a heavy and a light subunit, that are covalently connected by a dis...
متن کاملThe 4F2hc/LAT1 complex transports L-DOPA across the blood-brain barrier.
L-DOPA is transported across the blood-brain barrier (BBB) by an amino acid transporter, system L. Recently, it has been demonstrated that system L consists of two subunits, 4F2hc and either LAT1 or LAT2. 4F2hc/LAT1 and 4F2hc/LAT2 show different transport characteristics, while their distribution in the brain has not been determined. To clarify whether 4F2hc/LAT1 participates in L-DOPA transpor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009